An Example of a Facial Hydrogen Atom Attempting to Bridge All Five Atoms of an Open Pentagonal $B_{3} \mathrm{C}_{2}$ Face. The Crystal and Molecular Structure of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$, Including the
 Location and Refinement of All Hydrogen Atoms

Melvyn Rowen Churchill* and Barry G. DeBoer
Contribution from the Department of Chemistry, University of Illinois at Chicago Circle, Chicago, Illinois 60680. Received April 24, 1974

Abstract

The species $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ crystallizes in the centrosymmetric monoclinic space group $P 2_{1} / c$, with $a=10.0216$ (9) $\AA, b=10.9913$ (11) $\AA, c=14.5535$ (13) $\AA, \beta=98.57(1)^{\circ}, V=1585.2$ (3) $\AA, \rho(\mathrm{obsd})$ $=1.347(5), \rho($ calcd $)=1.343 \mathrm{~g} \mathrm{~cm}^{-3}$, and $Z=4$. X-Ray diffraction data complete to $2 \theta=62.5^{\circ}$ (Mo K α radiation) were collected with a Picker FACS-1 automated diffractometer, and the structure was solved using a combination of Patterson, Fourier, and least-squares refinement techniques. All atoms (including the 20 hydrogen atoms) were accurately located, the final discrepancy indices being $R_{F}=4.60 \%$ and $R_{w F}=3.36 \%$ for the 5197 independent reflections. The molecule is zwitterionic and may be regarded as formed from a cobaltocenium cation and a [$\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12}^{-}$] anion, which are linked via a carbon-carbon bond with concomitant loss of a terminal hydrogen atom from each species, thereby yielding the molecular formula ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right.$). The cobaltocenium residue is fairly regular, with cobalt-carbon distances ranging from 2.0207 (17) to 2.0666 (12) \AA and carbon-carbon bond lengths ranging from 1.387 (3) to 1.428 (2) \AA. The carborane anion is linked to the cobaltocenium cation via atom $\mathrm{C}(1)$, with $\mathrm{C}(1)-\mathrm{CP}(1)=1.480$ (2) \AA. The remaining ten atoms of the icosahedral $\mathrm{B}_{9} \mathrm{C}_{2}$ "nest" bear apical hydrogen atoms, with $\mathrm{C}(2)-\mathrm{H}=0.991(14) \AA$ and $\mathrm{B}-\mathrm{H}$ (terminal) $=1.045(14)-1.152$ (15) \AA. The "extra" (facial) hydrogen atom, $\mathrm{H}(\mathrm{FAC})$, lies asymmetrically above the open pentagonal face defined by $\mathrm{C}(1)-\mathrm{B}(4)-\mathrm{B}(8)-\mathrm{B}(7)-\mathrm{C}(2)$. Its bonding is principally to atom $\mathrm{B}(8)(\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)=1.331(22) \AA)$, but it clearly interacts appreciably with atoms $\mathrm{B}(4)$ and $\mathrm{B}(7)(\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(4)=1.631$ (22) and $\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)=1.636$ (22) A) and interacts weakly with atoms $\mathrm{C}(1)$ and $\mathrm{C}(2)(\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{C}(1)=2.009(22) \AA$ and $\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{C}(2)=1.976(22) \AA)$.

The reaction of the $\left[\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{H}_{12}{ }^{2-}\right.$] ion with excess $\mathrm{Na}^{+} \mathrm{C}_{5} \mathrm{H}_{5}^{-}$and excess CoCl_{2} has been shown ${ }^{1.2}$ to yield a species of molecular formula $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\pi$ $\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{H}_{12}$), the structure of which has been reported previously. ${ }^{3,4}$ The complex presently under consideration, $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$, occurs as a side product in the above reaction. ${ }^{5}$ Its stoichiometry and stereochemistry were elucidated only by the present structural analysis.

As outlined below, the observed structure is of considerable interest because it reveals an unusual zwitterionic cobaltocenium derivative and it is (to our knowledge) the first reported for a (substituted) [$\mathrm{B}_{9} \mathrm{C}_{2}$ $\mathrm{H}_{12}{ }^{-}$] ion. Apart from a presumed association with the open face, the "extra" hydrogen atom of the [$\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12}^{-}$] anion has not previously been located nor has a definitive location been assigned. The present study show this "extra" hydrogen atom to be present in a unique, multiply bridging environment.

Collection and Reduction of the X-Ray Diffraction Data

Orange crystals of $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ were provided by Professor M. F. Hawthorne of the University of California at Los Angeles. The crystal used during the diffraction study was a rather irregular truncated wedge $(\sim 0.47 \times 0.48 \times 0.54 \mathrm{~mm})$ which

[^0]had been cut from a much larger crystal ($\left.\sim(4 \mathrm{~mm})^{3}\right)$. The crystal was sealed inside a thin-walled Lindemann glass capillary, which was fixed into a brass pin on a eucentric goniometer. Preliminary precession and cone-axis photographs gave approximate cell dimensions, indicated $C_{2 h}(2 / m)$ Laue symmetry, and exhibited the systematic absences $h 0 l$ for $l=2 n+1$ and $0 k 0$ for $k=2 n+1$, consistent only with the centrosymmetric space group $P 2_{1} / c\left(C_{2 h}{ }^{5}\right.$; No. 14). ${ }^{6}$

The crystal was transferred to a Picker FACS-1 computer-controlled diffractometer, was accurately centered, and was orientated so as to place [011] precisely coincident with the instrumental ϕ axis. The apparatus and experimental technique were as described previously. ${ }^{7}$ Details specific to the present analysis are given in Table I. The validity of the applied absorption correction was checked by measuring the strong 022 reflection (by a $\theta-2 \theta$ scan) at $\chi=90^{\circ}$ and at 10° intervals of ϕ from $\phi=0^{\circ}$ to $\phi=350^{\circ}$. The observed variation of $\sim 11 \%$ was reduced to $\sim 2 \%$ after correcting these data for absorption.

Solution and Refinement of the Structure

Programs used in determining the structure included fordap (Fourier Synthesis, by A. Zalkin), lshf (a version of C. T. Prewitt's sfls5, highly modified by B. G. DeBoer,) stan1 (distances and angles, with estimated standard deviations, by B. G. DeBoer). PLOD (least-squares planes, by B. G. DeBoer), and ORTEP (thermal ellipsoid drawings, by C. K. Johnson).

Scattering factors for neutral cobalt, carbon, and boron were taken from the compilation of Cromer and Waber. ${ }^{8}$ Both the real and the imaginary components of anomalous dispersion were included in the calculated structure factor, using the values of Cromer and Liberman. ${ }^{9}$ The scattering factors of Stewart, Davidson, and
(6) "International Tables for X-Ray Crystallography," Vol, I, 2nd ed, Kynoch Press, Birmingham, England, 1965, p 99.
(7) M. R. Churchill and B. G. DeBoer, Inorg. Chem., 12, 525 (1973).
(8) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965).
(9) D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).

Table I. Experimental Data for X-Ray Diffraction Study of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$

(A) Crystal Parameters (at $\left.24^{\circ}\right)^{a}$

$a=10.0216(9) \AA$
$b=10.9913$ (11) \AA
$c=14.5535(13) \AA$
$\cos \beta=-0.14904$ (15)
$\beta=98.57(1)^{\circ}$
$V=1585.2(3) \AA^{3}$
Space group, $P 2_{1 / c}$
$Z=4^{b}$
Mol wt $=320.53$
$\rho($ calcd $)=1.343 \mathrm{~g} \mathrm{~cm}^{-3}$
ρ (obsd) $=1.347(5) \mathrm{g} \mathrm{cm}^{-3} c$
(B) Intensity Measurements

Crystal orientation, ϕ axis $=[011]$
Reflections measured, $h k l$ for $h, k \geq 0 ; 0 k l$ for $l \geq 0$
Maximum 2 θ, 62.5°
Radiation, Mo $\mathrm{K} \alpha$, Nb foil post-filter
Attenuators, Cu foil; used if $I>10^{4}$ counts sec^{-1}
Takeoff angle, 4.0°
Detector aperture: $4.5 \times 4.5 \mathrm{~mm} ; 330 \mathrm{~mm}$ from crystal
Scan type, θ (crystal)-2 θ (counter)
Scan speed, $2.0^{\circ} / \mathrm{min}$
Scan length, $\Delta(2 \theta)=(1.50+0.692 \tan \theta)^{\circ}$, starting 0.75° below the Mo $\mathrm{K} \alpha_{1}$ peak.
Background counts, stationary, 20 sec each at beginning and end of 2θ scan
Standard reflections, three remeasured after every 48 reflections; rms deviations were 0.68% for $400,0.75 \%$ for $048,0.77 \%$ for 033 . No decay correction applied
Reflections collected, 5199 independent measurements, plus 270 systematic absences

(C) Data Treatment

Conversion to $\left|F_{0}\right|$ and $\sigma\left(\left|F_{0}\right|\right)$ as in ref 7 , using $p=0.02$. Corrected for β-filter absorption as in ref 7. Corrected for absorption ${ }^{d}$: $\mu=11.065 \mathrm{~cm}^{-1} ; \max$ and min transmission factors were 0.720 and 0.614 .
${ }^{a}$ Unit cell parameters are from a least-squares fit to the setting angles of the resolved Mo $\mathrm{K} \alpha_{1}$ peaks ($\lambda 0.70926 \AA$) of 12 reflections ($2 \theta=46-65^{\circ}$). Maximum and root-mean-square disagreements were 0.022 and 0.010°, respectively. See ref 7. ${ }^{\text {b }}$ No crystallographic symmetry is imposed upon the molecule. ${ }^{c}$ Neutral buoyancy in aqueous $\mathrm{BaI}_{2} .{ }^{d}$ Using the Fortran IV program DRAB, by B. G. DeBoer.

Simpson ${ }^{10}$ were used for hydrogen. The function minimized during least-squares refinement was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $w=\sigma^{-2}\left(\left|F_{\mathrm{o}}\right|\right)$. Discrepancy indices used below are defined as follows

$$
\begin{aligned}
R_{F} & =\left[\frac{\sum\left\|F_{0}|-| F_{\mathrm{e}}\right\|}{\sum\left|F_{\mathrm{o}}\right|}\right] \times 100(\%) \\
R_{w F} & =\left[\frac{\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{o}}\right|\right)^{2}}{\left.\sum w F_{\mathrm{o}}\right|^{2}}\right]^{1 / 2} \times 100(\%)
\end{aligned}
$$

The analysis was begun using only data with $(\sin \theta / \lambda)<0.5(1652$ independent reflections). The position of the cobalt atom was determined from a three-dimensional Patterson map; an observed Fourier synthesis, phased only by this one atom, led to the location of all nonhydrogen atoms. Refinement of all positional parameters, anisotropic thermal parameters for the cobalt atom, and isotropic thermal parameters for the other nonhydrogen atoms, led to convergence with $R_{F}=8.3 \%$ and $R_{w F}=11.3 \%$. A difference Fourier at this stage yielded the approximate locations of all hydrogen atoms (19 terminal, 1 "facial"). Terminal hydrogen atoms were included in calculated positions (using $d(\mathrm{C}-\mathrm{H})=0.95 \AA^{11}$ and
(10) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965). The "best foated spherical H atom" values of Table II, p 3178, were used.
(11) M. R. Churchill, Inorg. Chem., 12, 1213 (1973).
$\left.d(\mathbf{B}-\mathrm{H})=1.12 \AA^{12}\right)$, but the "facial" hydrogen atom was deliberately omitted. Refinement of all positional parameters, anisotropic thermal parameters for nonhydrogen atoms, and isotropic thermal parameters for hydrogen atoms led to convergence with $R_{F}=3.38 \%$ and $R_{w F}=4.24 \%$. A difference Fourier synthesis revealed the "facial" hydrogen, H(FAC), as its largest feature ($\rho=$ $0.45 \mathrm{e}_{\AA^{-3}}$), in essentially the same position as before; the other features of this map were (in order) a peak of $0.31 \mathrm{e} \AA^{-3}$ between $\mathrm{CP}(7)$ and $\mathrm{HCP}(7)$ and peaks of 0.25 and $0.23 \mathrm{e} \AA^{-3}$ close to the position of the cobalt atom; all other features were less than 0.20 $\mathrm{e} \AA^{-3}$. Inclusion of $\mathrm{H}(\mathrm{FAC})$ and refinement led to convergence at $R_{F}=3.13 \%$ and $R_{w F}=3.83 \%$ for the low angle data.

All 5199 data were now included; several cycles of full-matrix least-squares refinement led to $R_{F}=4.63 \%$ and $R_{w F}=3.97 \%$ (or $R_{F}=4.60 \%$ and $R_{w F}=3.36 \%$ upon omission of the (presumably unreliable) $20 \overline{2}$ and 510 reflections for which $\Delta F / \sigma(F)>15)$. Final shifts were as follows: $<0.09 \sigma$ for all nonhydrogen atoms' positional parameters, $<0.35 \sigma$ for all hydrogen atoms' positional parameters, $<0.37 \sigma$ for all anisotropic thermal parameters, $<0.92 \sigma$ for all isotropic thermal parameters. The final value of the "good-ness-of-fit," defined as $\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2 /} /(n-m)\right]^{1 / 2}$, was 1.521 . The number of data (n) was 5197 , and the number of parameters (m) was $279(n / m=18.63)$. The function $\Sigma w\left(\left|F_{0}\right|-\mid F_{c}\right)^{2}$ was not appreciably dependent either upon $\sin \theta$ or on $\left|F_{0}\right|$, thereby indicating a correctly assigned weighting scheme.

It should be noted that no reflections were rejected on the basis of being "not significantly above background" (cf. ref 7). Thus, ca. 25.2% of the data had $I<3 \sigma(I)$ and $c a .13 .4 \%$ had $I<\sigma(I)$. The advantage of retaining these data is, of course, the increased $n: m$ ratio (vide supra) and concomitantly lower esd's; the single disadvantage is an unimportant, but cosmetically displeasing, higher value for $R F$.

The largest peaks on a final difference Fourier synthesis (based on all 5199 data) were of height 0.44 and $0.41 \mathrm{e}_{\AA^{-3}}$. (Both these and the next five most significant features are close to the π-cyclopentadienyl rings or to the cobalt atom.) Note that the residual peaks on this difference Fourier map are larger than those on the map synthesized only from data with $\sin \theta / \lambda<0.5$. We refer the reader to a discussion by Cruickshank. ${ }^{13}$ "The "error" in ρ [the electron density] evidently increases with the number of observations, contrary to one's natural instinct that a result ought to become more accurate as the number of observations increases. The resolution of this paradox is that. . [the so-called "error"]. . is not strictly the error in the electron density, which would need an infinite number of terms, but [is] the error in a particular truncated series."

In other words, the error formula referred to ${ }^{13}$ neglects the error contributions represented by the omitted (larger $\sin \theta / \lambda$) terms. In the case of an "observed" Fourier synthesis an omitted term contributes an error equal to its $|F|$, leading to the much-discussed "seriestermination errors." Conversely, omitting a term from a difference ($\left.\left|F_{0}\right|-F_{\mathrm{c}} \mid\right)$ synthesis is equivalent to assuming perfect agreement of $\left|F_{0}\right|$ and $\left|F_{\mathrm{c}}\right|$, leading to an under-estimation of the "difference density" obtainable from real experimental measurements. Thus, the magnitude of the features in a difference synthesis is expected to increase with an increasing number of included terms, consistent with our observation above. (Presumably the increase is an asymptotic approach to a limit so long as it is statistically true that each $\left|F_{0}\right|$ is a better approximation to the true $|F|$ than would be, say, a value assigned from the extrapolation of a Wilson plot; i.e., so long as the variation or width of the distribution of $\left|F_{0}\right|$'s is greater than $\sim \sigma\left(\left|F_{0}\right|\right)$.)

A table of observed and calculated structure factor amplitudes is available. ${ }^{14}$ Atomic coordinates and isotropic thermal parameters, with their estimated standard deviations (esd's), are shown in Table II. Anisotropic thermal parameters (with esd's) are collected in Table III.

Description of the Molecular Structure

Interatomic distances and their esd's are given in Table IV; bond angles, with esd's, are shown in Table
(12) M. R. Churchill and B. G. DeBoer, Inorg. Chem., 12, 2674 (1973).
(13) D., W. J. Cruickshank in "Computing Methods in Crystallography," J. S. Rollett, Ed., Pergamon Press, Oxford, England, 1965; see Chapter 13, pp 107-111.
(14) See paragraph at end of paper regarding supplementary material.

Table II. Atomic Coordinates and Isotropic Thermal Parameters, with Esd's, for $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)^{4} \cdot{ }^{b}$

Atom	x	y	z	B, \AA^{2}
Co	0.788277 (17)	0.230669 (16)	0.188563 (11)	2.320
CP(1)	0.62198 (12)	0.18673 (12)	0.09249 (8)	2.31
$\mathrm{CP}(2)$	0.72574 (13)	0.24236 (14)	0.04955 (8)	2.89
CP(3)	0.84365 (14)	0.16961 (16)	0.06842 (10)	3.38
CP(4)	0.81539 (15)	0.07148 (14)	0.12415 (11)	3.52
$\mathrm{CP}(5)$	0.67955 (14)	0.08147 (12)	0.13984 (10)	2.96
$\mathrm{CP}(6)$	0.85683 (18)	0.21979 (19)	0.32681 (10)	4.51
CP(7)	0.95121 (17)	0.28049 (23)	0.28026 (13)	5.36
CP(8)	0.88956 (25)	0.38234 (20)	0.23640 (14)	5.97
CP(9)	0.75614 (23)	0.38707 (18)	0.25583 (13)	5.44
$\mathrm{CP}(10)$	0.73710 (16)	0.28631 (18)	0.31125 (11)	4.40
C(1)	0.48190 (12)	0.22984 (11)	0.09181 (8)	2.24
$\mathrm{C}(2)$	0.44637 (14)	0.35827 (13)	0.05086 (11)	3.28
B(4)	0.39917 (15)	0.19937 (14)	0.17737 (10)	2.59
B(5)	0.35058 (15)	0.13003 (14)	0.06642 (11)	2.69
B(6)	0.38880 (17)	0.23505 (17)	-0.01789 (11)	3.35
B(7)	0.33658 (19)	0.43132 (15)	0.09971 (15)	3.71
B(8)	0.28779 (17)	0.32930 (16)	0.18661 (13)	3.29
B(9)	0.22818 (15)	0.19473 (15)	0.12661 (11)	2.87
B(10)	0.22045 (17)	0.21824 (17)	0.00395 (12)	3.45
B(11)	0.28796 (19)	0.36535 (18)	-0.01199 (14)	3.96
B(12)	0.18855 (17)	0.34388 (16)	0.07629 (13)	3.53
$\mathrm{HCP}(2)$	0.7191 (14)	0.3211 (14)	0.0146 (10)	2.9 (3)
$\mathrm{HCP}(3)$	0.9187 (17)	0.1907 (15)	0.0514 (11)	3.8 (4)
$\mathrm{HCP}(4)$	0.8722 (16)	0.0115 (15)	0.1505 (11)	4.0 (4)
$\mathrm{HCP}(5)$	0.6353 (15)	0.0270 (14)	0.1785 (11)	3.5 (3)
HCP (6)	0.8744 (21)	0.1427 (20)	0.3598 (14)	7.5 (6)
HCP(7)	1.0135 (21)	0.2545 (17)	0.2746 (14)	5.6 (7)
$\mathrm{HCP}(8)$	0.9198 (20)	0.4356 (19)	0.1968 (14)	6.9 (6)
HCP(9)	0.6886 (26)	0.4471 (24)	0.2372 (17)	10.2 (8)
$\mathrm{HCP}(10)$	0.6519 (22)	0.2659 (16)	0.3284 (14)	5.4 (5)
H(FAC)	0.4181 (22)	0.3468 (20)	0.1820 (15)	8.1 (6)
$\mathrm{HC}(2)$	0.5208 (14)	0.4049 (13)	0.0298 (9)	2.9 (3)
HB(4)	0.4464 (15)	0.1394 (14)	0.2387 (11)	3.9 (4)
HB(5)	0.3683 (14)	0.0375 (13)	0.0567 (10)	3.0 (3)
HB(6)	0.4251 (18)	0.2106 (15)	-0.0817 (13)	4.9 (4)
HB(7)	0.3338 (17)	0.5264 (17)	0.1064 (12)	5.2 (4)
$\mathrm{HB}(8)$	0.2453 (15)	0.3521 (14)	0.2517 (10)	3.6 (3)
HB(9)	0.1533 (14)	0.1373 (14)	0.1553 (10)	3.2 (3)
$\mathrm{HB}(10)$	0.1374 (17)	0.1762 (16)	-0.0449 (12)	4.7 (4)
HB(11)	0.2616 (19)	0.4212 (20)	-0.0743 (14)	6.9 (5)
HB(12)	0.0867 (16)	0.3813 (14)	0.0734 (11)	3.9 (4)

${ }^{a}$ Estimated standard deviations, shown in parentheses, are right-adjusted to the last digit of the preceding number and are those derived from the inverse of the least-squares matrix. ${ }^{b}$ For nonhydrogen atoms, the "equivalent isotropic thermal parameters" are listed. They correspond to the average of the mean-square displacements along the three principal axes of the anisotropic thermal ellipsoid.

Table III. Anisotropic Thermal Parameters, ${ }^{a}$ with Esd's, ${ }^{b}$ for Nonhydrogen Atoms in the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}_{(}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ Molecule

Atom	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}	$(U)^{c}$
Co	2.233 (7)	2.685 (7)	2.004 (7)	-0.173 (6)	0.185 (5)	-0.267 (6)	$0.153,0.171,0.188$
CP (1)	2.33 (5)	2.41 (5)	2.09 (4)	0.06 (4)	0.03 (4)	-0.27 (4)	$0.153,0.171,0.187$
CP(2)	2.67 (5)	4.03 (7)	1.99 (5)	0.28 (5)	0.43 (4)	-0.01 (4)	$0.158,0.182,0.227$
CP(3)	2.45 (5)	4.95 (8)	2.78 (6)	0.56 (5)	0.47 (4)	-0.97 (5)	$0.161,0.183,0.263$
CP(4)	2.86 (6)	3.31 (6)	4.09 (7)	0.97 (5)	-0.49 (5)	-1.03 (5)	$0.163,0.186,0.270$
$\mathrm{CP}(5)$	2.75 (5)	2.27 (5)	3.65 (6)	0.12 (4)	-0.25 (5)	-0.18 (4)	$0.168,0.176,0.231$
CP (6)	4.31 (8)	6.69 (11)	2.30 (6)	-0.23 (7)	-0.28 (5)	-0.47 (6)	$0.163,0.244,0.292$
CP(7)	2.74 (7)	9.35 (16)	3.88 (8)	-1.35 (8)	0.12 (6)	-2.71 (9)	$0.159,0.212,0.365$
CP(8)	8.26 (14)	5.40 (11)	4.38 (9)	-3.90 (11)	1.34 (9)	-1.90 (8)	$0.165,0.243,0.375$
CP(9)	7.37 (13)	4.27 (9)	4.49 (9)	0.71 (9)	0.29 (8)	-2.22 (7)	$0.164,0.275,0.323$
$\mathrm{CP}(10)$	3.57 (7)	6.92 (11)	2.86 (6)	-0.49 (7)	0.91 (5)	-1.72 (7)	$0.164,0.211,0.310$
C(1)	2.22 (4)	2.18 (4)	2.27 (4)	-0.01 (4)	0.18 (3)	0.09 (4)	$0.162,0.166,0.176$
C(2)	2.94 (6)	2.63 (6)	4.39 (7)	0.43 (5)	0.93 (5)	0.90 (5)	0.167, 0.188. 0.248
B(4)	2.43 (5)	2.80 (6)	2.48 (6)	-0.32 (4)	0.18 (4)	0.11 (4)	$0.168,0.177,0.198$
B(5)	2.45 (6)	2.42 (6)	3.02 (6)	0.02 (5)	-0.21 (5)	-0.31 (5)	$0.162,0.175,0.213$
B(6)	3.11 (6)	4.35 (8)	2.49 (6)	0.90 (6)	0.05 (5)	0.20 (6)	$0.167,0.196,0.247$
B(7)	3.67 (8)	2.16 (6)	5.56 (10)	0.30 (5)	1.49 (7)	0.07 (6)	$0.163,0.204,0.270$
B(8)	2.89 (6)	3.30 (7)	3.87 (7)	-0.23 (6)	1.14 (5)	-0.88 (6)	$0.173,0.190,0.243$
B(9)	2.26 (5)	2.86 (6)	3.46 (7)	-0.30 (5)	0.30 (5)	0.07 (5)	$0.165,0.193,0.211$
$\mathrm{B}(10)$	2.69 (6)	4.18 (8)	3.19 (7)	0.48 (6)	-0.55 (5)	-0.22 (6)	$0.160,0.215,0.243$
$\mathrm{B}(11)$	3.49 (7)	4.26 (9)	4.09 (8)	1.32 (6)	0.44 (6)	1.70 (7)	$0.157,0.221,0.277$
B(12)	2.63 (6)	3.41 (8)	4.62 (9)	0.85 (5)	0.73 (6)	0.34 (6)	$0.162,0.219,0.245$

${ }^{a}$ These anisotropic thermal parameters are analogous to the usual form of the isotropic thermal parameter and have units of \AA^{2}. They enter the expression for the structure factor in the form: $\exp \left[-0.25\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{83} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23}\right.\right.$. $\left.\left.k l b^{*} c^{*}\right)\right]$. ${ }^{b}$ See footnote a to Table II. ${ }^{c}$ These values correspond to the root-mean-square amplitudes of vibration (in A) of the atom along the three principal axes (minor, median, major, respectively) of its vibration ellipsoid. For relative orientations, see figures.

Table IV. Distances (in \AA) and Esd's within the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ Molecule ${ }^{a},{ }^{b}$

Atoms		Distance	Atoms

(b) Carbon-Carbon Distances within C_{5} Rings			
$\mathrm{CP}(1)-\mathrm{CP}(2)$	$1.4281(17)$	$\mathrm{CP}(6)-\mathrm{CP}(7)$	$1.4106(27)$
$\mathrm{CP}(2)-\mathrm{CP}(3)$	$1.4193(19)$	$\mathrm{CP}(7)-\mathrm{CP}(8)$	$1.3874(32)$
$\mathrm{CP}(3)-\mathrm{CP}(4)$	$1.4035(23)$	$\mathrm{CP}(8)-\mathrm{CP}(9)$	$1.4083(29)$
$\mathrm{CP}(4)-\mathrm{CP}(5)$	$1.4178(20)$	$\mathrm{CP}(9)-\mathrm{CP}(10)$	$1.3997(27)$
$\mathrm{CP}(5)-\mathrm{CP}(1)$	$1.4239(18)$	$\mathrm{CP}(10)-\mathrm{CP}(6)$	$1.3945(25)$
$\mathrm{CP}(1)-\mathrm{C}(1)$	$1.4803(16)$		

(c) Carbon-Hydrogen Distances in π-Cyclopentadienyl Rings

		$\mathrm{CP}(6)-\mathrm{HCP}(6)$	$0.976(22)$
$\mathrm{CP}(2)-\mathrm{HCP}(2)$	$1.001(15)$	$\mathrm{CP}(7)-\mathrm{HCP}(7)$	$0.703(20)$
$\mathrm{CP}(3)-\mathrm{HCP}(3)$	$0.858(16)$	$\mathrm{CP}(8)-\mathrm{HCP}(8)$	$0.905(20)$
$\mathrm{CP}(4)-\mathrm{HCP}(4)$	$0.917(17)$	$\mathrm{CP}(9)-\mathrm{HCP}(9)$	$0.955(25)$
$\mathrm{CP}(5)-\mathrm{HCP}(5)$	$0.973(15)$	$\mathrm{CP}(10)-\mathrm{HCP}(10)$	$0.951(22)$

(d) Distances within $\mathrm{B}_{9} \mathrm{C}_{2}$ Cage			
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.553(2)$	$\mathrm{B}(6)-\mathrm{B}(10)$	$1.772(3)$
$\mathrm{C}(1)-\mathrm{B}(4)$	$1.630(2)$	$\mathrm{B}(6)-\mathrm{B}(11)$	$1.762(3)$
$\mathrm{C}(1)-\mathrm{B}(5)$	$1.711(2)$	$\mathrm{B}(7)-\mathrm{B}(8)$	$1.811(3)$
$\mathrm{C}(1)-\mathrm{B}(6)$	$1.726(2)$	$\mathrm{B}(7)-\mathrm{B}(11)$	$1.780(3)$
$\mathrm{C}(2)-\mathrm{B}(6)$	$1.731(2)$	$\mathrm{B}(7)-\mathrm{B}(12)$	$1.758(3)$
$\mathrm{C}(2)-\mathrm{B}(7)$	$1.611(2)$	$\mathrm{B}(8)-\mathrm{B}(9)$	$1.775(2)$
$\mathrm{C}(2)-\mathrm{B}(11)$	$1.712(2)$	$\mathrm{B}(8)-\mathrm{B}(12)$	$1.765(3)$
$\mathrm{B}(4)-\mathrm{B}(5)$	$1.786(2)$	$\mathrm{B}(9)-\mathrm{B}(10)$	$1.794(2)$
$\mathrm{B}(4)-\mathrm{B}(8)$	$1.830(2)$	$\mathrm{B}(9)-\mathrm{B}(12)$	$1.815(2)$
$\mathrm{B}(4)-\mathrm{B}(9)$	$1.763(2)$	$\mathrm{B}(10)-\mathrm{B}(11)$	$1.781(3)$
$\mathrm{B}(5)-\mathrm{B}(6)$	$1.768(2)$	$\mathrm{B}(10)-\mathrm{B}(12)$	$1.794(3)$
$\mathrm{B}(5)-\mathrm{B}(9)$	$1.760(2)$	$\mathrm{B}(11)-\mathrm{B}(12)$	$1.755(3)$
$\mathrm{B}(5)-\mathrm{B}(10)$	$1.765(2)$		

(e) Terminal $\mathrm{C}-\mathrm{H}$ Distance within $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}$ Cage			
$\mathrm{C}(2)-\mathrm{HC}(2)$	$0.991(14)$		
(f) Terminal B-H Distances within $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}$			
Cage			
$\mathrm{B}(4)-\mathrm{HB}(4)$	$1.152(15)$	$\mathrm{B}(9)-\mathrm{HB}(9)$	$1.110(15)$
$\mathrm{B}(5)-\mathrm{HB}(5)$	$1.045(14)$	$\mathrm{B}(10)-\mathrm{HB}(10)$	$1.112(17)$
$\mathrm{B}(6)-\mathrm{HB}(6)$	$1.081(18)$	$\mathrm{B}(11)-\mathrm{HB}(11)$	$1.094(21)$
$\mathrm{B}(7)-\mathrm{HB}(7)$	$1.050(18)$	$\mathrm{B}(12)-\mathrm{HB}(12)$	$1.096(15)$
$\mathrm{B}(8)-\mathrm{HB}(8)$	$1.123(14)$		

(g) Distances Involving $\mathrm{H}(\mathrm{FAC})$, the Facial Hydrogen Atom

H(FAC)-B(8)	$1.331(22)$	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{HB}(8)$	$2.134(26)$
$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(4)$	$1.631(22)$	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{HB}(4)$	$2.426(27)$
$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)$	$1.636(22)$	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{HB}(7)$	$2.355(29)$
$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{C}(2)$	$1.976(22)$	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{HC}(2)$	$2.657(27)$

H(FAC) ...C(1) 2009
$\begin{array}{llll} & \begin{array}{l}\text { (h) Some Nonbonded Distances involving } \\ \mathrm{B}(8) \\ \mathrm{B}(8)\end{array} \cdots(1) & 2.772(2) & \mathrm{B}(8) \cdots \mathrm{C}(2)\end{array}$
${ }^{a}$ See footnote a to Tabje II and ref $16 .{ }^{b}$ Esd's are calculated by considering all elements of the positional covariance matrix of the last cycle of refinement. The calculation was performed using the Fortran IV program stan1, by B. G. DeBoer. Contributions from errors in the unit cell dimensions are included. No distances have been corrected for the effects of thermal motion.
V. ${ }^{15}$ The overall molecular geometry and labeling of
(15) The reader will notice that, here and elsewhere, the esd's are given to two significant figures. This is clearly necessary for statistical purposes when the first digit is " 1. ." Consider the following example. Two independent bond lengths are written as 1.30 (1) and 1.35 (1) \AA; are they statistically different? Using the normally accepted criterion that a 3σ difference is meaningful, and using $\sigma($ diff $)=\left[\sigma_{1}{ }^{2}+\sigma_{2}\right]^{1 / 2}$, the difference of $0.05 \AA$ represents $\sim 3.5 \sigma$ and the difference may be judged meaningful. However, we are neglecting both the error in-

Figure 1. A general view of the $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ molecule, showing the scheme used for labeling atoms. (ORTEP diagram, 30% ellipsoids: hydrogen atoms are artificially reduced to spheres of radius $0.07 \AA$).
atoms is shown in Figure 1. The molecule is a zwitterionic species in which the positive charge on the cobaltocenium moiety is balanced by the negative charge on the C -bonded $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}$ substituent.

The Cobaltocenium Cation. As shown in Figure 2, the cobaltocenium ion has a staggered conformation. The individual cobalt-carbon distances within this system range from 2.0207 (17) to 2.0666 (12) \AA. A close inspection, however, reveals that $\mathrm{CP}(1)$ (the carbon atom involved in the bonding to the carborane substituent) is significantly farther from the cobalt atom (2.0666 (12) \AA) than are the remaining four carbon atoms within this substituted π-cyclopentadienyl ring (range: 2.0223 (14)-2.0369 (13) Å: av 2.0290 ± 0.0064 \AA^{16}). Cobalt-carbon distances for the unsubstituted π-cyclopentadienyl ligand range from 2.0207 (17) to 2.0303 (15) \AA, with an average of $2.0255 \pm 0.0037 \AA .{ }^{16}$

As expected, the carbon atoms of the unsubstituted π-cyclopentadienyl ligand are coplanar within the limits of experimental error (root-mean-square (rms) deviation $\sim 0.002 \AA$: see Table VI), while those of the substituted π-cyclopentadienyl ligand show small, but significant, deviations from planarity (rms deviation $\sim 0.007 \AA$). The cobalt atom lies $+1.641 \AA$ from the plane defined by $\mathrm{CP}(1)-\mathrm{CP}(5)$ and $-1.638 \AA$ from that defined by $\mathrm{CP}(6)-\mathrm{CP}(10)$.

Carbon-carbon distances within the substituted (and hence "well-anchored") π-cyclopentadienyl ligand range from 1.4035 (23) to 1.4281 (17) \AA, averaging $1.4185 \pm$ $0.0093 \AA ;{ }^{16}$ those within the unsubstituted π-cyclopentadienyl ligand range from 1.3874 (32) to 1.4106 (27)
volved in rounding the esd and the error involved in rounding the bond lengths (the former, perhaps surprisingly, being the most important), and to three decimal places these same bond lengths and esd's might range from $1.295(5)$ and 1.354 (5) $\AA(\mathrm{diff}=0.059 \AA$ or 8.3σ) to 1.304 (14) and 1.345 (14) \AA (diff $=0.041 \AA$ or 2.1σ).
(16) Throughout the text esd's on individual parameters appear in parentheses, right adjusted to the least significant digit of the preceding number. Esd's of average values are given in the form " \pm X.XXX \AA " and are calculated via the expression

$$
\sigma=\left[\sum_{i=1}^{i=N}\left(\chi_{\mathrm{i}}-\bar{\chi}\right)^{2} /(N-1)\right]^{1 / 2}
$$

where χ_{i} is the ith value and $\bar{\chi}$ is the mean of N equivalent measurements.

Table V. Angles (in deg) and Esd's within the ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ Molecule ${ }^{a}$

Atoms	Angle	Atoms	Angle
(a) Angles Involving the Cobalt Atom			
$\mathrm{CP}(1)-\mathrm{Co}-\mathrm{CP}(2)$	40.78 (5)	$\mathrm{CP}(6)-\mathrm{Co}-\mathrm{CP}(7)$	40.72 (8)
$\mathrm{CP}(2)-\mathrm{Co}-\mathrm{CP}(3)$	40.96 (5)	$\mathrm{CP}(7)-\mathrm{Co}-\mathrm{CP}(8)$	40.12 (9)
$\mathrm{CP}(3)-\mathrm{Co}-\mathrm{CP}(4)$	40.57 (7)	$\mathrm{CP}(8)-\mathrm{Co}-\mathrm{CP}(9)$	40.71 (9)
$\mathrm{CP}(4)-\mathrm{Co}-\mathrm{CP}(5)$	40.88 (7)	$\mathrm{CP}(9)-\mathrm{Co}-\mathrm{CP}(10)$	40.42 (8)
$\mathrm{CP}(5)-\mathrm{Co}-\mathrm{CP}(1)$	40.60 (5)	$\mathrm{CP}(10)-\mathrm{Co}-\mathrm{CP}(6)$	40.23 (7)
$\mathrm{CP}(1) \cdots \mathrm{Co} \cdots \mathrm{CP}(7)$	177.67 (8)	$\mathrm{CP}(4) \ldots \mathrm{Co} \cdot . \mathrm{CP}(9)$	177.84 (8)
$\mathrm{CP}(2) \cdots \mathrm{Co} \cdots \mathrm{CP}(6)$	178.21 (6)	$\mathrm{CP}(5) \ldots \mathrm{Co} \cdots \mathrm{CP}(8)$	177.83 (9)
$\mathrm{CP}(3) \cdots \mathrm{Co} \cdots \mathrm{CP}(10)$	177.77 (7)		
(b) C-C-C Angles within the π-Cyclopentadienyl Rings			
$\mathrm{CP}(5)-\mathrm{CP}(1)-\mathrm{CP}(2)$	106.90 (11)	$\mathrm{CP}(10)-\mathrm{CP}(6)-\mathrm{CP}(7)$	107.24 (18)
$\mathrm{CP}(1)-\mathrm{CP}(2)-\mathrm{CP}(3)$	108.28 (13)	$\mathrm{CP}(6)-\mathrm{CP}(7)-\mathrm{CP}(8)$	108.55 (17)
$\mathrm{CP}(2)-\mathrm{CP}(3)-\mathrm{CP}(4)$	108.11 (13)	$\mathrm{CP}(7)-\mathrm{CP}(8)-\mathrm{CP}(9)$	107.97 (18)
$\mathrm{CP}(3)-\mathrm{CP}(4)-\mathrm{CP}(5)$	108.35 (13)	$\mathrm{CP}(8)-\mathrm{CP}(9)-\mathrm{CP}(10)$	107.55 (18)
$\mathrm{CP}(4)-\mathrm{CP}(5)-\mathrm{CP}(1)$	108.33 (13)	$\mathrm{CP}(9)-\mathrm{CP}(10)-\mathrm{CP}(6)$	108.70 (17)
(c) External Angles of Carbocyclic Rings			
$\mathrm{C}(1)-\mathrm{CP}(1)-\mathrm{CP}(5)$	125.37 (11)	$\mathrm{HCP}(6)-\mathrm{CP}(6)-\mathrm{CP}(10)$	128.5 (13)
$\mathrm{C}(1)-\mathrm{CP}(1)-\mathrm{CP}(2)$	127.71 (12)	$\mathrm{HCP}(6)-\mathrm{CP}(6)-\mathrm{CP}(7)$	124.1 (13)
$\mathrm{HCP}(2)-\mathrm{CP}(2)-\mathrm{CP}(1)$	126.5 (8)	$\mathrm{HCP}(7)-\mathrm{CP}(7)-\mathrm{CP}(6)$	122.4 (18)
$\mathrm{HCP}(2)-\mathrm{CP}(2)-\mathrm{CP}(3)$	125.1 (8)	$\mathrm{HCP}(7)-\mathrm{CP}(7)-\mathrm{CP}(8)$	128.1 (18)
$\mathrm{HCP}(3)-\mathrm{CP}(3)-\mathrm{CP}(2)$	122.2 (11)	$\mathrm{HCP}(8)-\mathrm{CP}(8)-\mathrm{CP}(7)$	130.3 (14)
HCP(3)-CP(3)-CP(4)	129.5 (11)	$\mathrm{HCP}(8)-\mathrm{CP}(8)-\mathrm{CP}(9)$	121.5 (14)
HCP(4)-CP(4)-CP(3)	128.9 (10)	$\mathrm{HCP}(9)-\mathrm{CP}(9)-\mathrm{CP}(8)$	128.5 (17)
$\mathrm{HCP}(4)-\mathrm{CP}(4)-\mathrm{CP}(5)$	122.6 (10)	$\mathrm{HCP}(9)-\mathrm{CP}(9)-\mathrm{CP}(10)$	124.0 (16)
$\mathrm{HCP}(5)-\mathrm{CP}(5)-\mathrm{CP}(4)$	125.2 (9)	$\mathrm{HCP}(10)-\mathrm{CP}(10)-\mathrm{CP}(9)$	122.9 (12)
$\mathrm{HCP}(5)-\mathrm{CP}(5)-\mathrm{CP}(1)$	126.4 (9)	$\mathrm{HCP}(10) \mathrm{CP}(10)-\mathrm{CP}(6)$	128.2 (12)
(d) Angles within Triangular Faces of the $\mathrm{B}_{9} \mathrm{C}_{2}$ Cage			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{B}(6)$	63.47 (9)	$\mathrm{B}(9)-\mathrm{B}(8)-\mathrm{B}(12)$	61.68 (10)
$\mathrm{B}(6)-\mathrm{C}(1)-\mathrm{B}(5)$	61.91 (9)	$\mathrm{B}(12)-\mathrm{B}(8)-\mathrm{B}(7)$	58.86 (10)
$\mathrm{B}(5)-\mathrm{C}(1)-\mathrm{B}(4)$	64.59 (9)	$B(4)-B(9)-B(5)$	60.94 (8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(6)$	63.14 (9)	$\mathrm{B}(5)-\mathrm{B}(9)-\mathrm{B}(10)$	59.53 (9)
$\mathrm{B}(6)-\mathrm{C}(2)-\mathrm{B}(11)$	61.58 (10)	$\mathrm{B}(10)-\mathrm{B}(9)-\mathrm{B}(12)$	59.60 (10)
$\mathrm{B}(11)-\mathrm{C}(2)-\mathrm{B}(7)$	64.72 (11)	$\mathrm{B}(12)-\mathrm{B}(9)-\mathrm{B}(8)$	58.89 (10)
$\mathrm{C}(1)-\mathrm{B}(4)-\mathrm{B}(5)$	59.89 (8)	$\mathrm{B}(8)-\mathrm{B}(9)-\mathrm{B}(4)$	62.28 (9)
$\mathrm{B}(5)-\mathrm{B}(4)-\mathrm{B}(9)$	59.46 (9)	$\mathrm{B}(5)-\mathrm{B}(10)-\mathrm{B}(6)$	59.97 (9)
$\mathrm{B}(9)-\mathrm{B}(4)-\mathrm{B}(8)$	59.19 (9)	$\mathrm{B}(6)-\mathrm{B}(10)-\mathrm{B}(11)$	59.46 (10)
$\mathrm{C}(1)-\mathrm{B}(5)-\mathrm{B}(4)$	55.52 (8)	$\mathrm{B}(11)-\mathrm{B}(10)-\mathrm{B}(12)$	58.80 (11)
$\mathrm{B}(4)-\mathrm{B}(5)-\mathrm{B}(9)$	59.61 (8)	$\mathrm{B}(12)-\mathrm{B}(10)-\mathrm{B}(9)$	60.78 (10)
$B(9)-B(5)-B(10)$	61.19 (9)	$\mathrm{B}(9)-\mathrm{B}(10)-\mathrm{B}(5)$	59.28 (9)
$\mathrm{B}(10)-\mathrm{B}(5)-\mathrm{B}(6)$	60.23 (9)	$\mathrm{C}(2)-\mathrm{B}(11)-\mathrm{B}(6)$	59.75 (9)
$\mathrm{B}(6)-\mathrm{B}(5)-\mathrm{C}(1)$	59.46 (8)	$B(6)-B(11)-B(10)$	60.02 (10)
$\mathrm{C}(1)-\mathrm{B}(6)-\mathrm{C}(2)$	53.39 (8)	$\mathrm{B}(10)-\mathrm{B}(11)-\mathrm{B}(12)$	60.96 (11)
$\mathrm{C}(2)-\mathrm{B}(6)-\mathrm{B}(11)$	58.68 (10)	$\mathrm{B}(12)-\mathrm{B}(11)-\mathrm{B}(7)$	59.62 (10)
$\mathrm{B}(11)-\mathrm{B}(6)-\mathrm{B}(10)$	60.52 (10)	$\mathrm{B}(7)-\mathrm{B}(11)-\mathrm{C}(2)$	54.89 (10)
$\mathrm{B}(10)-\mathrm{B}(6)-\mathrm{B}(5)$	59.80 (9)	$\mathrm{B}(7)-\mathrm{B}(12)-\mathrm{B}(8)$	61.87 (11)
$\mathrm{B}(5)-\mathrm{B}(6)-\mathrm{C}(1)$	58.63 (8)	$\mathrm{B}(8)-\mathrm{B}(12)-\mathrm{B}(9)$	59.43 (9)
$\mathrm{C}(2)-\mathrm{B}(7)-\mathrm{B}(11)$	60.39 (10)	$\mathrm{B}(9)-\mathrm{B}(12)-\mathrm{B}(10)$	59.61 (9)
$\mathrm{B}(11)-\mathrm{B}(7)-\mathrm{B}(12)$	59.47 (11)	$\mathrm{B}(10)-\mathrm{B}(12)-\mathrm{B}(11)$	$60.24(11)$
$\mathrm{B}(12)-\mathrm{B}(7)-\mathrm{B}(8)$	59.27 (10)	$\mathrm{B}(11)-\mathrm{B}(12)-\mathrm{B}(7)$	60.90 (11)
$\mathrm{B}(4)-\mathrm{B}(8)-\mathrm{B}(9)$	58.53 (8)		
(e) Angles within Pentagonal Equatorial Belts of the $\mathrm{B}_{9} \mathrm{C}_{2}$ Cage			
$\mathrm{B}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	111.48 (11)	$\mathrm{B}(9)-\mathrm{B}(5)-\mathrm{B}(6)$	108.71 (11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(7)$	114.61 (12)	$\mathrm{B}(5)-\mathrm{B}(6)-\mathrm{B}(11)$	108.16(12)
$\mathrm{C}(2)-\mathrm{B}(7)-\mathrm{B}(8)$	105.83 (12)	$\mathrm{B}(6)-\mathrm{B}(11)-\mathrm{B}(12)$	108.58 (12)
$\mathrm{B}(7)-\mathrm{B}(8)-\mathrm{B}(4)$	101.58 (11)	$\mathrm{B}(11)-\mathrm{B}(12)-\mathrm{B}(9)$	$107.63 \text { (11) }$
$\mathrm{B}(8)-\mathrm{B}(4)-\mathrm{C}(1)$	106.33 (11)	$B(12)-B(9)-B(5)$	106.91 (11)
(f) (Substituent)-(Cage Atom)-(Cage Atom) Angles for the Open Pentagonal Face			
$\mathrm{Cp}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.17 \text { (10) }$	$\mathrm{HB}(4)-\mathrm{B}(4)-\mathrm{B}(8)$	125.0 (8)
$\mathrm{Cp}(1)-\mathrm{C}(1)-\mathrm{B}(4)$	121.25 (10)	$\mathrm{HB}(4)-\mathrm{B}(4)-\mathrm{B}(9)$	$124.7 \text { (8) }$
$\mathrm{Cp}(1)-\mathrm{C}(1)-\mathrm{B}(5)$	119.63 (10)	$\mathrm{HB}(7)-\mathrm{B}(7)-\mathrm{C}(2)$	$124.5(10)$
$\mathrm{Cp}(1)-\mathrm{C}(1)-\mathrm{B}(6)$	113.47 (10)	$\mathrm{HB}(7)-\mathrm{B}(7)-\mathrm{B}(8)$	122.5 (10)
$\mathrm{HC}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	116.7 (8)	$\mathrm{HB}(7)-\mathrm{B}(7)-\mathrm{B}(11)$	$118.9 \text { (10) }$
$\mathrm{HC}(2)-\mathrm{C}(2)-\mathrm{B}(6)$	115.3 (8)	$\mathrm{HB}(7)-\mathrm{B}(7)-\mathrm{B}(12)$	121.9 (10)
$\mathrm{HC}(2)-\mathrm{C}(2)-\mathrm{B}(7)$	118.3 (8)	$\mathrm{HB}(8)-\mathrm{B}(8)-\mathrm{B}(4)$	123.3 (8)
$\mathrm{HC}(2)-\mathrm{C}(2)-\mathrm{B}(11)$	119.5 (8)	$\mathrm{HB}(8)-\mathrm{B}(8)-\mathrm{B}(7)$	128.8 (8)
$\mathrm{HB}(4)-\mathrm{B}(4)-\mathrm{C}(1)$	120.8 (8)	$\mathrm{HB}(8)-\mathrm{B}(8)-\mathrm{B}(9)$	117.3 (8)
$\mathrm{HB}(4)-\mathrm{B}(4)-\mathrm{B}(5)$	118.7 (8)	$\mathrm{HB}(8)-\mathrm{B}(8)-\mathrm{B}(12)$	120.9 (8)
(g) H-B-B Angles for Lower Pentagonal Belt			
$\mathrm{HB}(5)-\mathrm{B}(5)-\mathrm{C}(1)$	120.8 (8)	$\mathrm{HB}(9)-\mathrm{B}(9)-\mathrm{B}(10)$	121.7 (7)
$\mathrm{HB}(5)-\mathrm{B}(5)-\mathrm{B}(4)$	120.5 (8)	$\mathrm{HB}(9)-\mathrm{B}(9)-\mathrm{B}(12)$	123.1 (8)
$\mathrm{HB}(5)-\mathrm{B}(5)-\mathrm{B}(6)$	118.9 (8)	$\mathrm{HB}(11)-\mathrm{B}(11)-\mathrm{C}(2)$	123.9 (11)
$\mathrm{HB}(5)-\mathrm{B}(5)-\mathrm{B}(9)$	127.2 (8)	$\mathrm{HB}(11)-\mathrm{B}(11)-\mathrm{B}(6)$	119.0 (11)
$\mathrm{HB}(5)-\mathrm{B}(5)-\mathrm{B}(10)$	126.3 (8)	$\mathrm{HB}(11)-\mathrm{B}(11)-\mathrm{B}(7)$	121.9 (11)

Table V (Continued)

Atoms	Angle	Atoms	Angle
$\mathrm{HB}(6)-\mathrm{B}(6)-\mathrm{C}(1)$	125.6 (10)	$\mathrm{HB}(11)-\mathrm{B}(11)-\mathrm{B}(10)$	124.6 (11)
$\mathrm{HB}(6)-\mathrm{B}(6)-\mathrm{C}(2)$	124.4 (10)	$\mathrm{HB}(11)-\mathrm{B}(11)-\mathrm{B}(12)$	126.1 (10)
$\mathrm{HB}(6)-\mathrm{B}(6)-\mathrm{B}(5)$	124.7 (9)	$\mathrm{HB}(12)-\mathrm{B}(12)-\mathrm{B}(7)$	123.9 (8)
$\mathrm{HB}(6)-\mathrm{B}(6)-\mathrm{B}(10)$	125.4 (10)	$\mathrm{HB}(12)-\mathrm{B}(12)-\mathrm{B}(8)$	117.7 (8)
$\mathrm{HB}(6)-\mathrm{B}(6)-\mathrm{B}(11)$	120.8 (10)	$\mathrm{HB}(12)-\mathrm{B}(12)-\mathrm{B}(9)$	120.1 (8)
$\mathrm{HB}(9)-\mathrm{B}(9)-\mathrm{B}(4)$	121.9 (8)	$\mathrm{HB}(12)-\mathrm{B}(12)-\mathrm{B}(10)$	120.9 (8)
$\mathrm{HB}(9)-\mathrm{B}(9)-\mathrm{B}(5)$	121.2 (8)	$\mathrm{HB}(12)-\mathrm{B}(12)-\mathrm{B}(11)$	123.3 (8)
$\mathrm{HB}(9)-\mathrm{B}(9)-\mathrm{B}(8)$	119.1 (8)		
(h) H-B-B Angles for Basal Boron Atom			
$\mathrm{HB}(10)-\mathrm{B}(10)-\mathrm{B}(5)$	121.8 (10)	$\mathrm{HB}(10)-\mathrm{B}(10)-\mathrm{B}(11)$	123.9 (9)
$\mathrm{HB}(10)-\mathrm{B}(10)-\mathrm{B}(6)$	124.8 (9)	$\mathrm{HB}(10)-\mathrm{B}(10)-\mathrm{B}(12)$	120.9 (9)
$\mathrm{HB}(10)-\mathrm{B}(10)-\mathrm{B}(9)$	119.6 (9)		
(i) All Angles Involving the "Facial" Hydrogen Atom, H(FAC)			
$\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)-\mathrm{B}(4)$	59.7 (10)	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(4)-\mathrm{C}(1)$	76.0 (8)
$\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)-\mathrm{B}(7)$	60.5 (10)	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(4)-\mathrm{B}(8)$	44.9 (8)
$\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)-\mathrm{B}(9)$	110.9 (10)	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)-\mathrm{C}(2)$	75.0 (8)
$\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)-\mathrm{B}(12)$	111.4 (10)	$\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)-\mathrm{B}(8)$	45.1 (8)
$\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)-\mathrm{HB}(8)$	120.5 (13)		
$\mathrm{B}(4) \cdots \mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)$	75.5 (11)	$\mathrm{B}(4) \cdots \mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)$	119.4 (14)
$\mathrm{B}(7) \cdots \mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)$	74.5 (11)		

${ }^{a}$ See footnotes to Table IV.
\AA, averaging $1.4001 \pm 0.0096 \mathrm{~A} .{ }^{16}$ The smaller value for the unsubstituted π-cyclopentadienyl ligand may be attributed to its larger amplitude of libration (see Figure 2), rather than to any subtle electronic effect.

Angles within the planar carbocyclic rings necessarily average 108.00°. However, the angle $\mathrm{CP}(5)-\mathrm{CP}(1)-$ $\mathrm{CP}(2)$ is only $106.90(11)^{\circ}$, whereas the other angles within this substituted ligand range from 108.11 (13) to $108.35(13)^{\circ}$, averaging $108.27 \pm 0.11^{\circ} .^{16}$ Clearly this perturbation must result from the substituent on $\mathrm{CP}(1)$, since angles within the unsubstituted π-cyclopentadienyl system show a more random variation, i.e., from 107.24 (18) to $108.55(17)^{\circ}$, averaging $108.00 \pm 0.56^{\circ} .^{16}$

Carbon-lyydrogen distances within the cobaltocenium ion range from $\mathrm{CP}(7)-\mathrm{HP}(7)=0.703$ (20) to $\mathrm{CP}(2)-$ $\mathrm{HCP}(2)=1.001$ (15) $\AA .{ }^{17}$ As may be seen in Table VI, the hydrogen atoms do not lie in the planes of the carbocyclic rings but are (on average) displaced toward the cobalt atom (by an average of $0.053 \AA$ for $\mathrm{HCP}(2)-$ $\mathrm{HCP}(5)$ and $0.059 \AA$ for $\mathrm{HCP}(6)-\mathrm{HCP}(10)$).

We note at this point that X-ray studies on the cobaltocenium derivatives $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}^{+}\right]\left[\mathrm{ClO}_{4}-\right],{ }^{18}[(\pi-$ $\left.\left.\mathrm{C}_{\overline{5}} \mathrm{H}_{5}\right)_{2} \mathrm{Co}+\right]\left[\mathrm{Co}\left(\mathrm{PPh}_{3}\right) \mathrm{I}_{3}^{-}\right],{ }^{19}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}^{+}\right]_{2}\left[\mathrm{CoCl}_{4}{ }^{2-}\right],{ }^{20}$ and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}^{+}\right]_{2}\left[\mathrm{ZnCl}_{4}{ }^{2-}\right]^{20}$ have been reported; the precision of these studies is sufficiently low that a comparison of their molecular parameters with those of the current structure is unwarranted.

The Carborane Anion. The carborane anion is a Csubstituted derivative of the parent $\left[\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12}{ }^{-}\right]$anion. The present structural determination is, to the best of our knowledge, the first on such an anion, although many derivatives of the $\left[\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}{ }^{2}\right.$] anion have been examined.

The "heavy-atom" (i.e., $\mathrm{B}_{9} \mathrm{C}_{2}$) framework of the ligand defines an icosahedron from which one apex has been removed.
(17) The expected $\mathbf{C}-\mathbf{H}$ distance from an X-ray study is $\sim 0.95 \mathrm{~A}$; see ref 11 .
(18) E. Frasson, G. Bombieri, and C. Panattoni, Acta Crystallogr., Sect. A, 16, 68 (1963).
(19) M. van den Akker, R. Olthof, F. van Bolhius, and F. Jellinek, Recl. Trav. Chim. Pays-Bas, 91, 75 (1972).
(20) J, R. Guenter, G. Mattman, and H. Werner, J. Organometal. Chem., 25, 475 (1970).

Figure 2. The $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ molecule, showing the staggered conformation of the cobaltocenium fragment (ORTEP diagram, 30% ellipsoids; hydrogen atoms shown as spheres of radius $0.07 \AA$).

The carbon-carbon distance, $\mathrm{C}(1)-\mathrm{C}(2)=1.553$ (2) \AA, is similar to that found in other $\mathrm{B}_{9} \mathrm{C}_{2}$-containing systems in which the C_{2} fragment is not bound to a metal atom, viz., 1.528 (19) \AA for $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12} \mathrm{AlMe}_{2}{ }^{21}$ and values
(21) M. R. Churchill and A. H. Reis, J. Chem. Soc., Dalton Trans., 1314 (1972).

Table VI. Least-Squares Planes (and Deviations of Atoms from Those Planes) within the
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{~B}_{8} \mathrm{C}_{2} \mathrm{H}_{11}\right)$ Molecule ${ }^{a, b}$

Atom	Dev, \AA	Atom	Dev, \AA
Plane $\mathrm{I}:$	$0.17166 X+0.54226 Y+0.82249 Z=$	3.2522	
$\mathrm{CP}(1)^{*}$	-0.009	$\mathrm{C}(1)$	-0.001
$\mathrm{CP}(2)^{*}$	0.009	$\mathrm{HCP}(2)$	0.067
$\mathrm{CP}(3)^{*}$	-0.006	$\mathrm{HCP}(3)$	0.054
$\mathrm{CP}(4)^{*}$	-0.000	$\mathrm{HCP}(4)$	0.042
$\mathrm{CP}(5)^{*}$	0.006	$\mathrm{HCP}(5)$	0.048
Co	1.641		

Plane II:	$0.18257 X+0.54237 Y+0.82007 Z=$	6.6063	
$\mathrm{CP}(6)^{*}$	-0.001	$\operatorname{HCP}(6)$	-0.052
$\mathrm{CP}(7)^{*}$	0.003	$\mathrm{HCP}(7)$	-0.103
$\mathrm{CP}(8)^{*}$	-0.003	$\mathrm{HCP}(8)$	-0.082
$\mathrm{CP}(9)^{*}$	0.003	$\mathrm{HCP}(9)$	0.024
$\mathrm{CP}(10)^{*}$	-0.001	$\mathrm{HCP}(10)$	-0.083
Co	-1.638		

Plane III:	$0.63106 X+0.40247 Y+0.66316 Z=4.8297$		
$\mathrm{C}(1)^{*}$	-0.015	$\mathrm{CP}(1)$	0.686
$\mathrm{C}(2)^{*}$	-0.06	$\mathrm{HC}(2)$	0.999
$\mathrm{~B}(4)^{*}$	0.027	$\mathrm{HB}(4)$	0.561
$\mathrm{~B}(7)^{*}$	0.022	$\mathrm{HB}(7)$	0.480
$\mathrm{~B}(8)^{*}$	-0.028	$\mathrm{HB}(8)$	0.337
		$\mathrm{H}(\mathrm{FAC})$	0.836

Plane IIIa:	$0.64863 X+0.39910 Y+0.64807 Z=4.8718$		
C(1)	-0.004	$\mathrm{CP}(1)$	0.723
$\mathrm{C}(2)^{*}$	0.004	$\mathrm{HC}(2)$	0.526
$\mathrm{~B}(4)^{*}$	0.002	$\mathrm{HB}(4)$	0.531
$\mathrm{~B}(7)^{*}$	-0.002	$\mathrm{HB}(7)$	0.450
		$\mathrm{H}(\mathrm{FAC})$	0.809

Plane IIIb:	$0.59606 X+0.40995 Y+0.69040 Z=$	4.8157	
$\mathrm{~B}(4)^{*}$	0.000	$\mathrm{HB}(4)$	0.541
$\mathrm{~B}(7)^{*}$	0.000	$\mathrm{HB}(7)$	0.470
$\mathrm{~B}(8)^{*}$	0.000	$\mathrm{HB}(8)$	0.411
		$\mathrm{H}(\mathrm{FAC})$	0.817

Plane IV:	$0.62847 X+0.40238 Y+0.66567 Z$	$=3.3350$	
$\mathrm{~B}(5)^{*}$	-0.006	$\mathrm{HB}(5)$	-0.383
$\mathrm{~B}(6)^{*}$	0.006	$\mathrm{HB}(6)$	-0.398
$\mathrm{~B} 9)^{*}$	0.004	$\mathrm{HB}(9)$	-0.487
$\mathrm{~B}(11)^{*}$	-0.004	$\mathrm{HB}(11)$	-0.435
$\mathrm{~B}(12)^{*}$	0.000	$\mathrm{HB}(12)$	-0.500
$\mathrm{~B}(10)$	-0.950		
	Dihedral		
	Angles (deg)		
I/II	0.64	I/III	29.31
IIIa/IIIb	3.92	III/IV	0.21

${ }^{a}$ Planes are in Cartesian coordinates such that $[X, Y, Z]=[x a+$ $z c \cos \beta, y b, z c \sin \beta] .{ }^{b}$ Planes are derived using unit weights for atoms marked with an asterisk and zero weight for all other atoms.
of 1.53 (1) and 1.49 (3) \AA (respectively) for the "slipped" bis $\left(\eta^{3}-1,2\right.$-dicarbollyl)metal species $\left[\left(\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)_{2} \mathrm{Cu}^{2-}\right]^{22}$ and $\left[\left(\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)_{2} \mathrm{Cu}^{-}\right] .{ }^{23}$ In contrast to this, it should be noted that carbon-carbon distances within η^{j}-dicarbollyl ligands are typically $\sim 1.60-1.63 \AA$ in length. ${ }^{24}$

Carbon-boron bond lengths fall into two sets. Within the open pentagonal face of the icosahedral fragment, $\mathrm{C}(1)-\mathrm{B}(4)$ is 1.630 (2) \AA and $\mathrm{C}(2)-\mathrm{B}(7)$ is 1.611 (2) \AA in length; within the body of the $B_{9} C_{2}$ "nest" carbon-boron distances are considerably longer, individual values being $\mathrm{C}(1)-\mathrm{B}(5)=1.711$ (2) \AA, $\mathrm{C}(1)-\mathrm{B}(6)=1.726(2) \AA, \mathrm{C}(2)-\mathrm{B}(6)=1.731(2) \AA$, and $\mathrm{C}(2)-\mathrm{B}(11)=1.712(2) \AA$. The shorter carbon-boron bonds within the open pentagonal face presumably

[^1]reflect a greater bond order due to the lower connectivity of the atoms involved.

Boron-boron bond distances range from 1.755 (3) to 1.830 (2) \AA; two of the three longest distances (i.e., $\mathrm{B}(4)-\mathrm{B}(8)=1.830(2) \AA$ and $\mathrm{B}(7)-\mathrm{B}(8)=1.811$ (3) $\AA)$ are associated with $B(8)$, the central boron atom of the open pentagonal $\mathrm{B}_{3} \mathrm{C}_{2}$ face. As outlined below, this atom $[B(8)]$ is the most strongly involved with the "facial" hydrogen atom, H(FAC).

As may be seen from Table VI, the lower pentagonal belt of the "nest-like" $\left[\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11} \mathrm{R}^{-}\right]\left(\mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CoC}_{5} \mathrm{H}_{4}{ }^{+}\right)$ ligand, defined by $\mathrm{B}(5)-\mathrm{B}(6)-\mathrm{B}(11)-\mathrm{B}(12)-\mathrm{B}(9)$, is planar within the limits of experimental error (rms deviation of boron atoms from the least-squares plane $=0.005$ \AA). In contrast to this, the rms deviation of constituent atoms from the open pentagonal face is $\sim 0.024 \AA$ (plane III, Table VI). The dihedral angle between the system $B(4)-C(1)-C(2)-B(7)$ (rms deviation $\sim 0.004 \AA$) and the strictly planar system $\mathrm{B}(4)-\mathrm{B}(8)-\mathrm{B}(7)$ is 3.92°.

All hydrogen atoms of the [$\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11} \mathrm{R}^{-}$] anion have been located. The carbon-hydrogen bond, $\mathrm{C}(2)-\mathrm{HC}(2)$, is 0.991 (14) \AA in length, while individual terminal boron-hydrogen bond lengths range from $\mathrm{B}(5)$ $\mathrm{HB}(5)=1.045(14) \AA$ to $\mathrm{B}(4)-\mathrm{HB}(4)=1.152(15) \AA$, averaging $1.096 \pm 0.034 \AA$. (This may be compared with the average $\mathrm{B}-\mathrm{H}$ bond distance of $1.116 \pm 0.018 \AA$ found in $\left[\mathrm{Me}_{4} \mathrm{~N}^{+}\right]\left[\mathrm{Me}_{2} \mathrm{~B}_{10} \mathrm{C}_{2} \mathrm{H}_{11}{ }^{-}\right]$. ${ }^{12}$) These distances are, however, X-ray determined distances (i.e., from centroid of electron density to centroid of electron density) and are thus systematically reduced from the accepted internuclear distances.

As shown in Table $\mathrm{V}, \mathrm{H}-\mathrm{B}(10)-\mathrm{B}$ angles range from 119.6 (9) to 124.8 (9) ${ }^{\circ}, \mathrm{H}-\mathrm{B}-\mathrm{B}$ angles centered on the lower pentagonal belt range from 117.7 (8) to 127.2 $(8)^{\circ}$, and H (terminal)-B-(B or C) angles centered on the open pentagonal face range from 117.3 (8) to 128.8 $(8)^{\circ}$. (The expected exterior angle for a regular icosahedron is 121.71°, i.e., $90^{\circ}+\cos ^{-1}\left(1 /\left(2 \sin 36^{\circ}\right)\right)$.)

Hydrogen atoms associated with the belt $\mathrm{B}(5)-\mathrm{B}(6)-$ $\mathrm{B}(11)-\mathrm{B}(12)-\mathrm{B}(9)$ are all displaced from that plane toward $\mathrm{B}(10)$, by amounts ranging from -0.383 to $-0.500 \AA$ (plane IV of Table VI): terminal hydrogen atoms associated with the open pentagonal face, $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(7)-\mathrm{B}(8)-\mathrm{B}(4)$, are displaced by 0.499 A $(\mathrm{HC}(2)), 0.561 \AA(\mathrm{HB}(4))$, and $0.480(\mathrm{HB}(7)): \mathrm{HB}(8)$ is only $0.337 \AA$ from this plane, while $C P(1)$ lies $0.686 \AA$ above the plane.

All the preceding evidence is presented to assure the reader that hydrogen atoms have been located with reasonable precision, and that each terminal hydrogen atom is in a position very close to that expected for an external substituent of a regular icosahedral fragment. We now come to a consideration of the unique "facial" hydrogen atom, designated $\mathrm{H}(\mathrm{FAC})$.

The position of $\mathrm{H}(\mathrm{FAC})$ relative to the open pentagonal face is shown in Figures 3a and 3b. It lies on the pseudo-mirror plane of the anion, $0.836 \AA$ above the open $\mathrm{B}_{3} \mathrm{C}_{2}$ face; its X-ray crystallographically determined distances to the five atoms in this plane are (in order): $\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)=1.331(22) \AA, \mathrm{H}(\mathrm{FAC}) \cdots$ $\mathrm{B}(4)=1.631(22) \AA, \mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)=1.636(22) \AA$, $\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{C}(2)=1.976$ (22) \AA, and $\mathrm{H}(\mathrm{FAC}) \cdots$. $\mathrm{C}(1)=2.009(22) \AA$. Thus, while the atom $\mathrm{H}(\mathrm{FAC})$ is principally involved in bonding to $B(8)$, there are clearly significant interactions with $\mathrm{B}(4)$ and $\mathrm{B}(7)$ and

Figure 3. The environment of the "facial" hydrogen atom. (a) Projection on to the least-squares plane of the open pentagonal face (ORTEP diagram; 30\% ellipsoids for all atoms; carbon and boron atoms shaded). (b) "Side-on" view of the facial hydrogen over the $\mathrm{B}_{3} \mathrm{C}_{2}$ face; only substituents $\mathrm{C}(1), \mathrm{HB}(8)$, and $\mathrm{H}(\mathrm{FAC})$ are shown (ORTEP diagram; 30% ellipsoids).
weak, but finite, interactions with $C(1)$ and $C(2)$, as is indicated by the following evidence.
(1) The $\mathrm{B}(8)-\mathrm{H}(\mathrm{FAC})$ distance of 1.331 (22) \AA is about $0.2 \AA$ longer than that found for a normal terminal $\mathrm{B}-\mathrm{H}$ bond. $(\mathrm{B}(4)-\mathrm{HB}(4)$, the longest terminal bond in the present structure, is 1.152 (15) \AA in length.)
(2) $\mathrm{H}(\mathrm{FAC})$ lies in a position tending toward (i.e., within $0.5 \AA$ of) that which would be occupied by the 12th particle of the idealized completed regular icosahedron.
(3) The angle $\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)-\mathrm{HB}(8)$ is $120.5(13)^{\circ}$, i.e., larger than a regular tetrahedral angle. One would expect a reduction in this angle if such contacts as H(FAC) $\cdots \mathrm{B}(4)$ and $\mathrm{H}(\mathrm{FAC}) \cdots \mathrm{B}(7)$ (1.631 (22) and 1.636 (22) \AA) were repulsive.
(4) Normal van der Waals distances for B $\cdots \mathrm{H}$ and $\mathrm{C} \cdots \mathrm{H}$ contacts are ~ 2.9 and $\sim 2.8 \AA .{ }^{25.25}$ The observed distances between $\mathrm{H}(\mathrm{FAC})$ and atoms $\mathrm{B}(4)$, $B(7), C(1)$, and $C(2)$ are all substantially lower than these van der Waals distances.
(5) As pointed out by Hawthorne, ${ }^{27}$ the bonding orbitals within the open pentagonal face of the $\mathrm{B}_{9} \mathrm{C}_{2}$ $\mathrm{H}_{11}{ }^{2-}$ ion closely resemble those of the cyclopentadienide $\left(\mathrm{C}_{5} \mathrm{H}_{5}^{-}\right)$ion. ${ }^{28}$ As such, the lowest lying orbital is cylindrically symmetric (in the approximation that boron and carbon are equivalent). The introduction of H^{+}above the open pentagonal face (to produce $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{1_{2}}{ }^{-}$) therefore leads to a situation where all atoms of the open pentagonal face must have some finite bonding interaction with the H^{+}(since the hydrogen's 1s orbital is spherically symmetric).
(6) The open pentagonal face is, in fact, heteronuclear, with the carbon atoms being the most positive.
(25) These are very approximate. The van der Waals radius for hydrogen $(1.2 \AA)$ is taken directly from ref 26 a. Values of $\sim 1.7 \AA$ for boron and $\sim 1.6 \AA$ for carbon are calculated by adding $0.8 \AA$ to the appropriate covalent radii (see ref 26 b).
(26) L. Pauling, "Nature of the Chemical Bond", 3rd ed, Cornell University Press, Ithaca, N. Y.: (a) Table 7-20, p 260: (b) p 263
(27) M. F. Hawthorne, Accounts Chem. Res., 1, 281 (1968).
(28) W. Moffitt, J. Amer. Chem. Soc., 76, 3386 (1954).

Figure 4. The $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(7)-\mathrm{B}(8)-\mathrm{B}(4)$ face, showing the orientation of the vibration ellipsoid associated with atom $\mathrm{H}(\mathrm{FAC})$. (This diagram has the same perspective as Figure 3a.) Details of the thermal parameters of $\mathrm{H}(\mathrm{FAC})$ are as follows: $B_{11}=7.3$ (10), $B_{22}=5.3$ (8), $B_{33}=10.6$ (11), $B_{12}=-0.4$ (8), $B_{13}=-4.6$ (9), $B_{23}=-6.0(7) \AA^{2}$. The rms amplitudes of vibration along the principal axes of the ellipsoid are $0.03,0.29$, and $0.48 \AA$, the "thin" direction being perpendicular to the plane of projection of this figure.

Electrophilic attack (e.g., H^{+}) on the open pentagonal face of a $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}{ }^{2-}$ ion would preferentially occur at $\mathrm{B}(8)$-the position furthest from $\mathrm{C}(1)$ and $\mathrm{C}(2)$.

In summary, then, $\mathrm{H}(\mathrm{FAC})$ has bonding interactions with all atoms in the open pentagonal face but is most strongly linked to $\mathrm{B}(8)$.

A further point which must be considered carefully is the possibility that $\mathrm{H}(\mathrm{FAC})$ represents the net result of either static disorder or dynamic tautomerism between normal μ_{2} bridging hydrogen atoms between $\mathrm{B}(8)-\mathrm{B}(4)$ and $\mathrm{B}(8)-\mathrm{B}(7)$. Concerning this problem we make the following observations. (a) The idealized positions of such μ_{2} bridges would be on planes perpendicular to, and passing through the midpoints of, $B(8)-B(4)$ and $\mathrm{B}(8)-\mathrm{B}(7)$ and directed over the open pentagonal face. From the available structural information, we cannot, on any a priori grounds, reject the possibilities of a double (or multiple) potential minimum or disorder. However, disorder of, or tautomerism between, such μ_{2}-hydrido bridges would lead to the electron density associated with $\mathrm{H}(\mathrm{FAC})$ being elongated in a direction parallel to the $B(4) \cdots B(7)$ vector. This is simply not observed. (See (b) and (c).) (b) An electron density map of $\mathrm{H}(\mathrm{FAC})$ (i.e., a difference Fourier map of the structure using F_{c} values based on all atoms other than $\mathrm{H}(\mathrm{FAC})$) shows pronounced elongation of this peak in the direction $\mathrm{B}(8) \cdots$ (midpoint of $\mathrm{C}(1)-\mathrm{C}(2)$), i.e., perpendicular to that expected for disordered μ_{2} bridges. (c) We have also refined anisotropically the thermal parameters associated with $\mathrm{H}(\mathrm{FAC}),{ }^{29}$ the resulting discrepancy indices being $R_{F}=4.56 \%$ and $R_{w F}=3.31 \%$. The results of this procedure, while not entirely satisfactory, show the major axis of the vibration ellipsoid to lie at
(29) Parameters for all atoms were refined (three cycles). At the termination of this phase, the anisotropic thermal parameters for $\mathbf{H}(F A C)$ were still shifting by about 0.5σ, but refinement was declared complete. No atomic parameter, except those associated with H(FAC), shif ted by more than 0.1σ, and all results in this article are based on the isotropic refinement of $\mathrm{H}(\mathrm{FAC})$. Note, however, that the positional parameters of $\mathrm{H}(\mathrm{FAC})$ only moved by $c a .1 .0 \sigma$.
an angle of $c a .60^{\circ}$ to that expected for disordered μ_{2}-hydrido bridges. (See Figure 4.)
We should add that the systematic error between X -ray determined $\mathrm{H} \cdots \mathrm{X}$ distances and true internuclear distances will act in such a way that the true (internuclear) separation for $\mathrm{H}(\mathrm{FAC})-\mathrm{B}(8)$ will be greater than 1.331 (22) \AA, and perhaps as great as $\sim 1.43 \AA$. Other $\mathrm{H}(\mathrm{FAC})-\mathrm{B}$ and $\mathrm{H}(\mathrm{FAC})-\mathrm{C}$ distances will not be so drastically affected.
Acknowledgments. This work has been made possible by financial support from the National Science Foundation(Grant GP-42724X, to M. R. C.). Comput-
ing services were provided by the Computer Center of the University of Illinois at Chicago Circle on an IBM $370 / 158$ computer; their assistance is gratefully acknowledged.

Supplementary Materia1 Available. A listing of structure factor amplitudes will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}$, $24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th Street, N.W., Washington, D. C. 20036. Remit check or money order for $\$ 4.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-74-6310.

A New Type of Metalloborane. Structural and Spectroscopic Characterization of Tricarbonylmanganese Tridecahydrooctaborate, $(\mathrm{CO})_{3} \mathrm{MnB}_{8} \mathrm{H}_{13}$

Joseph C. Calabrese, Mark B. Fischer, Donald F. Gaines,* and John W. Lott
Contribution from the Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706. Received May 16, 1974

Abstract

The title compound is the first structurally characterized example of a new type of metalloborane. It contains a tridentate B_{3} ligand bound to manganese by two $\mathrm{M}-\mathrm{H}-\mathrm{B}$ bridge hydrogen bonds from borons bordering the open face of the borane cage and one M-H-B bond from an adjacent boron in the base of the borane cage. Crystals of the complex form in the orthorhombic space group Pmcn with unit cell parameters $a=11.549$ (2) A, $b=5.506$ (1) $\AA, c=19.260$ (3) $\AA, V=1224.7$ (3) \AA^{3}, and $Z=4 ; \quad d_{\text {caled }}=1.294$ and $d_{\text {mease }}=1.289$ (6) $\mathrm{g} / \mathrm{cm}^{3}$. The X-ray crystal structure was solved by conventional heavy atom techniques and refined to $R_{1}=0.033$ and $R_{2}=$ 0.041 for 928 independent nonzero reflections on a Syntex P1 autodiffractometer. The molecule has crystallographic site symmetry $C_{s}-m$. The bond angles about the manganese indicate nearly perfect octahedral coordination.

TThe reaction of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}$ with $\mathrm{KB}_{9} \mathrm{H}_{14}$ in ethereal solvents has produced several metalloboranes in which the $\mathrm{Mn}(\mathrm{CO})_{3}$ moiety replaces the 6 (or 9) B-H unit in a decaborane-like framework; bonding to the rest of the cage is via a σ bond and two bridging hydrogen bonds. ${ }^{1-3}$ Examples of these metalloboranes include $6-(\mathrm{CO})_{3}-6-\mathrm{MnB}_{9} \mathrm{H}_{12} \mathrm{~L} \quad(\mathrm{~L}=$ $2-\mathrm{OC}_{4} \mathrm{H}_{8}, \quad 5-\mathrm{OC}_{4} \mathrm{H}_{8}, \quad 2-\mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, and $8-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}-$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right)$ and salts of $6-(\mathrm{CO})_{3}-6-\mathrm{MnB}_{9} \mathrm{H}_{13}-$. An additional compound, $(\mathrm{CO})_{3} \mathrm{MnB}_{8} \mathrm{H}_{13}$, is produced in small yields. It appears to be an elision product, in which the (CO$)_{3} \mathrm{Mn}$ moiety is bonded to the borane cage in a novel and unprecedented manner. We report here the synthesis, characterization, structure, and bonding of this compound.

Experimental Section

Reagents and Solvents. Potassium tetradecahydrononaborate-$(-1), \mathrm{KB}_{9} \mathrm{H}_{14}$, was made by a modification ${ }^{1}$ of the method of Benjamin, Stafiej. and Takacs. ${ }^{4}$ Manganese pentacarbonyl bromide
(1) (a) J. W. Lott and D. F. Gaines, Inorg. Chem., in press; (b) J. W. Lott, Ph.D. Thesis, University of Wisconsin, Madison, Wisc., 1973.
(2) J. W. Lott, D. F. Gaines, H. Shenhav, and R. Schaeffer, J. Amer. Chem. Soc., 95, 3042 (1973).
(3) (a) D. F. Gaines, J. W. Lott, and J. C. Calabrese, J. Chem. Soc., Chem. Commun., 295 (1973); (b) D. F. Gaines, J. W. Lott, and J. C. Calabrese, Inorg. Chem., in press.
was prepared from the parent metal pentacarbonyl dimer, Mn_{2} $(\mathrm{CO})_{10}$, and bromine. All other reagents and solvents were reagent grade and were used as received.

Compound Preparation. (CO$)_{3} \mathrm{MnB}_{8} \mathrm{H}_{13}$ was prepared according to the method of Lott and Gaines. ${ }^{1}$ In a typical reaction a solution of 0.9308 g of $\mathrm{KB}_{9} \mathrm{H}_{1 \pm}(6.2 \mathrm{mmol})$ and 1.4357 g of $\left.\mathrm{Mn}(\mathrm{CO})\right)_{5} \mathrm{Br}(5.2$ mmol) in diethyl ether was refluxed for $3-6 \mathrm{hr}$. The reaction mixture was then stripped of solvent by evaporation under vacuum. The remaining oily red material was dissolved in a minimum of dichloromethane and placed on a Florisil-packed liquid chromatography column. Elution with heptane gave a bright yellow band, containing the $(\mathrm{CO})_{8} \mathrm{MnB}_{8} \mathrm{H}_{13}$. If these yellow solutions were allowed to stand for several hours, definite signs of decomposition were observed. To minimize this decomposition the solution was quickly evaporated under vacuum immediately after its removal from the chromatography column. The solid material was then transferred to the bottom of a long ($35-40 \mathrm{~cm}$) Pyrex glass tube having a reasonably wide cross section ($25-28 \mathrm{~mm}$ diameter) and equipped with a vacuum stopcock. The tube was then enclosed in two halves of a copper tubing heat sink and an outer glass tube for insulation. This assemblage was clamped vertically so that the bottom of the sample tube and several centimeters of the copper jacket were submerged in an oil bath. The tube was then evacuated continuously while the temperature was slowly raised to $45-52^{\circ}$ overnight. The desired product was then separated from impurities (generally $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and $\mathrm{Mn}_{2}\left(\mathrm{CO}_{s} \mathrm{Br}_{2}\right.$) by cutting the tube into sections and checking the golden yellow crystals which had grown on the walls of each section by infrared spectroscopy. Very pure $(\mathrm{CO})_{3} \mathrm{MnB}_{8} \mathrm{H}_{13}$ was obtained in this manner. The yield from a
(4) L. E. Benjamin, S. F. Stafiej, and E. A. Takacs, J. Amer. Chem. Soc., 85, 2674 (1963).

[^0]: (1) G. B. Dunks, M. M. McKown, and M. F. Hawthorne, J. Amer. Chem. Soc., 93, 2541 (1971).
 (2) D. F. Dustin, G. B. Dunks, and M. F. Hawthorne, J. Amer. Chem. Soc., 95, 1109 (1973).
 (3) M. R. Churchill and B. G. DeBoer, J. Chem. Soc., Chem. Commun., 1326 (1972).
 (4) M. R. Churchill and B. G. DeBoer, Inorg. Chem., 13, 1411 (1974).
 (5) Personal communication from Professor M. F. Hawthorne and Dr. D. F. Dustin.

[^1]: (22) R. M. Wing, J. Amer. Chem. Soc., 89, 5599 (1967).
 (23) R. M. Wing, J. Amer. Chem. Soc., 90, 4828 (1968).
 (24) M. R. Churchill and A. H. Reis, J. Chem. Soc., Dalton Trans., 1317 (1972); see, especially, Table 6 on p 1320.

